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Abstract. The advent of high-energy hadron colliders necessitates efficient and accurate computation of
multi-jet production processes, both as QCD processes in their own right and as backgrounds for other
physics. The algorithm that performs these tasks and a brief numerical study of multi-jet processes are
presented.

1 Introduction

With the recommissioning of the Tevatron, and the fore-
seeable commencement of physics at the LHC, the need
for fast and accurate QCD calculations is now larger than
ever. In this paper, we describe our efforts to arrive at
results of such calculations. To set the stage: we have in
mind the computation of QCD cross sections with many
observed jets that, as usual, are modelled by assuming
that each jet comes from a single fragmenting parton.
With the large amount of energy available, the number
n of jets can easily be as large as eight, thus requiring the
computation of amplitudes with 10 or even more external
legs.

Although in principle straightforward enough, the usual
techniques of evaluating Feynman diagrams and integrat-
ing the resulting cross section by Monte Carlo are in prac-
tice hampered by the computational complexity of the
problem. The following obstacles can be recognized.
(1) The flavors of the initial partons are never detected,
and in most cases (barring, say, b tagging) neither are the
flavors of the final-state partons. In what follows we take
all quarks (u, d, s, c, and b) to be essentially massless,
although a version of the code with massive fermions ex-
ists. In the case of flavor integration, to be discussed later
on, we always treat quarks as massless. This means that
in any given jet configuration there are usually very many
contributing processes. Even enumerating these is a non-
trivial task, and calculating each individual process cross
section is even more so [16].
(2) In addition to flavor, neither the color nor the spin of
any parton is observed. For an amplitude with p quark
partons and q gluons this implies that in principle (6)p
(16)q contributions have to be added. It is true that, in
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particular, many color configurations lead to zero ampli-
tudes, but figuring out precisely which these are is very
hard.
(3) Each individual amplitude, with specified flavors, col-
ors and spins, contains very many Feynman diagrams. In
AppendixB we give a recipe for determining the precise
number of graphs, at the tree level [17]. Typical results are
that the process gg → 8g is described by 10,525,900 dia-
grams, and the process gg → 2g3u3ū by 946,050 diagrams.
Inclusion of loop corrections worsens this dramatically, of
course.
(4) Each amplitude peaks in complicated ways inside the
momentum phase space. Straightforward integration is
therefore impractical, and one has to search for efficient
mappings to do importance sampling in a multi-particle
phase space.

All these difficulties are addressed in this paper, and
here we describe our solutions, in reverse order.
(4) The peaking structure of the amplitude is dealt with by
our phase-space generating algorithm SARGE [9,11]. This
algorithm is tailored to the generation of so-called antenna
structures. Let p1, . . . , pn be the momenta of the n partons
involved. The peaking behavior of the cross section for the
purely gluonic process involving n gluons, gg → (n − 2)g
is then dominated by the following antenna structure:[

(p1p2)(p2p3)(p3p4) · · · (pn−1pn)(pnp1)
]−1

and any permutation of labels. Since processes involv-
ing quarks do not show other dominant peaking behavior
than the above ones, we can cover the n-particle momen-
tum phase space with good efficiency. More details about
SARGE can be found in [12].
(3) Over the last years new algorithms, along with their
implementations, for computing the tree-order scattering
amplitude have been proposed [3,13,4]. These do not in-
volve the calculation of individual diagrams, but rather
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Fig. 1. Coupling of the fields in QCD

reorganize, in a systematic way, the various off-shell sub-
amplitudes in such a way that as little of the computa-
tion as possible is repeated. The improvement in compu-
tational efficiency of these algorithms is nevertheless dra-
matic, down from about n! to something like 3n. In the
algorithm suggested originally in [3] the scattering ampli-
tude was computed through a set of recursive equations
derived from the effective action as a function of the classi-
cal fields. These classical equations represent nothing but
the tree-order Schwinger–Dyson equations, a fact that was
already emphasized in subsequent approaches [4] and will
be illustrated below for the special case of QCD. In fact,
recursive techniques have already been used in the past to
compute multi-gluon amplitudes [2].
(2) The usual spin and color summation is replaced by a
Monte Carlo integration. In the purely gluonic case [13]
this has been shown to work rather well. It must be real-
ized that since we replace the more usual sum over discrete
color and spin states by a continuous (Monte Carlo) in-
tegration, the variance of the cross section can indeed be
expected to be smaller.
(1) We tackle the flavor combinatorics in the same spirit:
we assign to each quark and antiquark a flavor quantum
number, that is, we extend the definition of the external
legs by a direct product with a flavor vector in the space
of the five available flavors. By taking these vectors ran-
domly we can perform a sum over flavors by Monte Carlo
as well, and the only computational difference between
the case of one single flavor and that of f flavors is simply
a factor f , whereas the discrete-flavor-sum combinatorics
would lead to a much bigger loss in speed. The possibility
of coherent superpositions of different flavors might seem
awkward but is in fact quite natural since all quarks are
treated as massless and therefore the distinction between
flavors is to a large extent arbitrary. The only place where
flavors are not treated on an equal footing is in the struc-
ture functions that describe the difference in probability
of picking out different flavors: by a judicious weighting of
the flavor vectors for incoming quarks and antiquarks we
can handle this as well.

Considering the Monte Carlo treatment of spin, color
and flavor, the essential point is to realize that we are

Fig. 2. Recursion equation for gluons

entitled to use any representation for the corresponding
information, as long as we end up with the correct sums
on the average.

Before finishing this introduction we want to mention
that, so far, we can calculate partonic cross sections. These
are typically good for global quantities like total cross sec-
tions, pT distributions and the like. A fuller treatment
involves coupling the generated events to fragmentation
programs like HERWIG [10]. These programs typically re-
quire additional information on the “spanning of the color
string”. In [7] a way to do this for processes with zero or
one quark lines is described; in [18] we shall indicate how
the present program can be adapted in a similar manner.

2 The algorithm for jet production

2.1 The scattering amplitude

Our starting point are the Dyson–Schwinger (DS) equa-
tions, which give recursively the n-point Green’s functions.
These equations hold all the information for the fields and
their interactions for any number of external legs and to
all orders in perturbation theory. We restrict ourselves to
tree-level calculations, so we discard ghost fields. Also we
consider all quarks as massless. The couplings between
fields, relevant for QCD, are shown in Fig.1.

The recursive content of the DS equation, for the gluon
field for example, can be understood diagrammatically as
in Fig.2. The figure shows that a subamplitude with an off-
shell gluon of momentum P has contributions from three-
and four-vertices plus a fermion–antifermion vertex. The
shaded blobs denote subamplitudes with the same struc-
ture. So, in effect, this is a recursive equation which we
can write down immediately (suppressing the color):

Aµ(P ) =
n∑
i=1

δP=piA
µ(pi) (1)

+ (igs)
∑

P=p1+p2

Πµ
ν ψ̄(p1)γνψ(p2)σ(p1, p2)

+
(igs)
2

∑
P=p1+p2

V µνλ(P, p1, p2)Aν(p1)Aλ(p2)σ(p1, p2)

− (g2
s)
6

∑
P=p1+p2+p3

GµνλρAν(p1)Aλ(p2)Aρ(p3)σ(p1, p2),

where V µνλ(P, p1, p2) and Gµνλρ are the 3- and 4-point
vertices and

Πµ
ν =

−igµν
P 2
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Fig. 3. Recursion equation for quarks

Fig. 4. Recursion equation for antiquarks

is the gluon propagator. The symbol σ(p1, p2) – we will
call it the sign function – takes into account the Fermi
sign and has the values ±1. More on the sign function
will be presented later on. For a quark of momentum P
(suppressing the color again)

ψ(P ) =
n∑
i=1

δP=pi
ψ(pi)

+ (igs)
∑

P=p1+p2

SA/(p1)ψ(p2)σ(p1, p2) (2)

(compare Fig.3), where S is the propagator

S =
iP/
P 2 ,

and for an antiquark

ψ̄(P ) =
n∑
i=1

δP=pi ψ̄(pi)

+ (igs)
∑

P=p1+p2

ψ̄(p2)A/(p1)S̃σ(p1, p2) (3)

(compare Fig.4), where

S̃ =
−iP/
P 2 .

In order to reduce computational complexity, as we will
discuss later on, we replace the four-gluon vertex with
a three-vertex by introducing an auxiliary field Hµν . We
rewrite the part of the QCD Lagrangian that describes
the four-vertex in terms of the auxiliary field as follows:

LH = −gfabcAa
µA

b
νH

µνc − Ha
µνH

µνa. (4)

The recursion for the gluons changes slightly, namely only
the part with the four-vertex. Additionally, we also have
an equation for the auxiliary field (compare Fig.5):

Aµ(P ) =
n∑
i=1

δP=pi
Aµ(pi)

+ (igs)
∑

P=p1+p2

Πµ
ν ψ̄(p1)γνψ(p2)σ(p1, p2)

+
(igs)
2

∑
P=p1+p2

V µνλ(P, p1, p2)Aν(p1)Aλ(p2)σ(p1, p2)

− (gs)
∑

P=p1+p2

XµνλρAν(p1)Hλρ(p2)σ(p1, p2), (5)

Fig. 5. Elimination of the four-vertex and the new H–gluon–
gluon vertex

Hµν(P ) = − (gs)
4

∑
P=p1+p2

XµνλρAλ(p1)Aρ(p2)σ(p1, p2),

(6)
where Xµνλρ is the new H–gluon–gluon vertex:

Xµνλρ = gµλgνρ − gνλgµρ.

These four equations, namely (5), (6), (2) and (3), repre-
sent off-shell subamplitudes that are the building blocks
of any process. They are used iteratively, combining two
(or three) momenta, at each step, to build a subampli-
tude. The iteration begins with the initial conditions for
the external particles. In particular for a gluon we have

Aµ
a(pi) = εµλ(pi)δaai , i = 1, . . . , n, (7)

where a is the color, a = 1, . . . , 8, εµλ(p) denotes the polar-
ization vector and i denotes one the external gluons. For
the quarks and antiquarks the iteration starts with

ψk(pi) =

{
u(pi)δkki if i incoming,
ū(pi)δkki if i outgoing,

ψ̄k(pi) =

{
ū(pi)δkki if i incoming,
u(pi)δkki

if i outgoing,
(8)

where k is the color, k = 1, 2, 3. The next step is combining
two of the external momenta, in all possible ways, in accor-
dance to the Feynman rules, to compute the next subam-
plitude. The iteration goes through in the same manner,
using the equations (5), (6), (2) and (3) repeatedly, each
time combining the new momenta obtained, with the re-
maining of the external ones. After n − 1 steps there is
only one momentum left to be combined, so the last step
gives us the amplitude A(p1, p2, . . . , pn). We refer to [4]
for all further details of the algorithm.

2.2 Color and helicity

In order to have an estimate of the production probabil-
ity, one has to sum over all color and helicity configura-
tions. Summation over colors is a delicate subject. If one
performs the summation in a straightforward way then
one has to consider something like 8ng × 3nq × 3nq̄ con-
figurations for the n-parton scattering, where ng, nq, nq̄ is
the number of gluons, quarks and antiquarks respectively.
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In this section we show how this summation can be re-
placed by integration, which is then suitable for Monte
Carlo computation. As a first step a simplification of the
color structure is possible by defining the following object
[13]:

GAB ≡
8∑

a=1

taABG
a, A,B = 1, 2, 3, (9)

where Ga is the gluon field and all other indices have been
temporarily suppressed. The new objects are of course
traceless, 3 × 3 matrices in color space. The interesting
property of this color representation is that it leads to a
“diagonalization” of the color structure of the three-gluon
vertex. More specifically the color part of the three-gluon
vertex is now given by

fabctaABt
b
CDtcEF = − i

4
(δADδCF δEB − δAF δCBδED) (10)

(compare Fig.6). This color structure shows the color flow
in the real physical process, where gluons can be repre-
sented by quark–antiquark states in color space and their
self-interaction, as given by (10), reflects the fact that
color remains unchanged on an uninterrupted color line.
The recursion equations that include the gluon, like (5),
now are modified according to (9), to reflect the new color
structure. The full content of the recursion equations, in-
cluding the color structure as just described, is listed in
Appendix A.

This new, simplified color structure of the vertices, al-
lows us now to take the next step in making the com-
putation of the color part of an amplitude more efficient,
by ridding ourselves of the summations, mentioned in the
beginning of this section, and replacing them by inte-
gration. To this end, we assign to a fermion a complex
vector zA, where the index runs from 1 to 3, represent-
ing its color content. These vectors parameterize the 5-
dimensional representation of SU(3) on the sphere and
are subjected to the constraint

| z1 |2 + | z2 |2 + | z3 |2= 1.

In this space, integration is defined through the proper
definition for the invariant group measure, [dz]:∫

[dz] ≡
∫ ( 3∏

i=1

dzidz∗
i

)
δ

(
3∑
i=1

ziz
∗
i − 1

)
.

We can use a simple polar coordinates parameterization
to represent these complex vectors:

z1 = eiφ1 cos θ,
z2 = eiφ2 sin θ cos ξ,
z3 = eiφ3 sin θ sin ξ,

0 ≤ φi ≤ 2π; 0 ≤ θ ≤ π

2
; 0 ≤ ξ ≤ π

2
, (11)

and in terms of these variables, the invariant measure be-
comes

1
π3

(
3∏
i=1

∫ 2π

0
dφi

)∫ π/2

0
dθ
∫ π/2

0
dξ cos θ sin3 θ cos ξ sin ξ.

Fig. 6. Color flow in the gluon three-vertex, as represented in
(10)

The color structure as described by (10) shows that
gluons can be interpreted as quark–antiquark pairs. So we
construct the following vector, appropriate for describing
the color part of a gluon, which has this color structure:

ηa(z) =
√
24

3∑
i,j=1

z∗
i (t

a)ijzj , a = 1, . . . , 8, (12)

where ta are the Gell-Mann matrices. This vector is real,
because (ηa)∗ = ηa due to the hermiticity of the Gell-
Mann matrices, and is normalized as follows:∫

[dz]ηa(z)ηb(z) = δab.

As far as our recursive equations are concerned: their
structure remains unaffected and the only thing to be
changed are the initial conditions:

Gµ
AB(Pi) =

8∑
a=1

Ga(Pi)ηa(z)

=
√
6
(
ziAz

∗
iB − 1

3
δAB

)
εµλ(Pi),

ψA(Pi) =
√
3u(Pi)ziA,

ψ̄A(Pi) =
√
3ū(Pi)z∗

iA, (13)

where as usual i = 1, . . . , n, λ is the helicity and (zi are the
new continuous color coordinates of the ith parton. The
constants in the front are normalizations.

In the same spirit summation over helicity configura-
tions of the external partons can be replaced by an in-
tegration over a phase variable. For example, for a gluon
this is achieved by introducing the polarization vector

εµφ(p) = eiφεµ(p,+) + e−iφεµ(p,−),

where φ is a random number. Then by integrating over φ
we obtain the sum over helicities,

1
π

∫ π

0
dφεµφ(p)(ε

ν
φ(p))

∗ =
∑
λ=±

εµ(p, λ)(εν(p, λ))∗.

The same thing can be used for the helicity of a quark or
an antiquark. For example, for the quark we have

uφ(p) = eiφu+(p) + e−iφu−(p),

and when integrated over φ it gives the sum over polar-
izations ∑

λ=±
uλ(p)ūλ(p) = p/

and the same for an antiquark.
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Table 1. The number of distinct processes, as defined in Appendix C, for f = 5
final-state flavors, and f = 4 initial-state flavors

# of jets 2 3 4 5 6 7 8 9 10
# of dist. processes 10 14 28 36 64 78 130 154 241
total # of processes 126 206 621 861 1862 2326 4342 5142 8641

2.3 The Fermi sign function

Since we are dealing with fermions, we must find a way
to incorporate a sign change when we interchange two
identical fermions in a process. To this end we use the
binary representation of the momentum labels of the ex-
ternal particles (e.g. P1 → (0001), P2 → (0010), P3 =
P1 + P2 → (0011), etc.) So the sign relative to the per-
mutation of two momenta, σ(Pi, Pj) is computed as an
operation on the two binary strings representing those
momenta, σ(mi,mj). The function that performs that op-
eration is defined by

σ(m1,m2) = (−1)χ(m1,m2), (14)

with

χ (m1,m2) =
2∑

i=n

m̂1i


i−1∑
j=1

m̂2j


 . (15)

A hat over the binary string means that this particular
bit is set to 0 if the corresponding external particle is a
boson.

2.4 Flavor treatment

The classification of processes contributing to the produc-
tion of n jets is simplified when certain symmetries are
taken into account. For instance processes like gg → uūuū
and gg → dd̄dd̄ can be grouped together in the general
class with representative gg → qq̄qq̄; obviously an extra
factor f , representing the number of light flavors, has to
be taken into account. We may call the representative “a
distinct processes” and attempt a complete classification
of such processes. Is clear that the number of distinct pro-
cesses for a given number n of jets will be a small fraction
of the total number of processes; this has a major impli-
cation on the computational complexity of the problem,
since we may have the total contribution by just comput-
ing the contribution of a relatively small number of dis-
tinct processes. In Table 1 we give the number of distinct
processes, as defined in Appendix C, for f = 5 final-state
flavors, and f = 4 initial-state flavors, where we used these
numbers in order to be able to compare with [1].

Another way to tackle all these different processes is
to introduce quarks (antiquarks) that are a mixture of
different flavors. Thus, keeping with the spirit of color
and helicity treatment, we integrate over flavors instead
of summing over them. This is done by attaching a vector
(f to each spinor describing a fermion, the components of
which are random numbers between 0 and 1:

ψp = u(p) × (f,

with

(f =
√

Nf




f1

f2

f3
...

fNf




,

where f1, f2, . . . , fNf
are random numbers and Nf is the

number of flavors. We choose the vectors (f in such a way
so that they are normalized as follows:

〈fifj〉 = δij ,

where i, j = 1, . . . , Nf . As far as the final state is con-
cerned, all flavors are equally treated (massless quarks).
In the initial state however, due to different structure func-
tions, special care should be taken of different flavors by a
suitable weighting of the initial conditions with the struc-
ture function appropriate for each flavor.

In treating flavor as described so far a new “definition”
of the concept of distinct process emerges. Any process is
now composed by three primary objects, namely g, q and
q̄, where q(q̄) represents a coherent superposition of all
flavor states. The possible initial states are nine, namely
gg, gq, gq̄, qg, q̄g, qq̄, q̄q, qq, q̄q̄ and a final state will be de-
termined by fixing the number m of qq̄ pairs. Obviously m
should satisfy, 2m ≤ n − ci, with ci counts the net quark
(antiquark) content of the initial state, namely

cgg = cqq̄ = cq̄q = 0, cgq = cqg = cq̄g = cgq̄ = 1,
cqq = cq̄q̄ = 2.

So the number of “distinct processes” is now given by

9k + 3 if n = 2k and 9k + 7 if n = 2k + 1, (16)

which represents a further reduction compared with the
number of distinct processes indicated in the previous ta-
ble.

3 Jet production rates

The features discussed in the previous sections have been
implemented in a FORTRAN code with which we are able
to perform perturbative calculations in QCD. We can di-
vide the structure of the calculation leading to jet pro-
duction rates in four parts: event generation, phase-space
generation, squared amplitude computation and sum over
processes calculation. In somewhat more detail these parts
consist of the following.
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Amplitude computation

The basic structure of the algorithm for the amplitude was
discussed in Sect. 2. In order to obtain squared amplitudes
we use projection to a continuous color space and color
MC integration and integration over helicity states. What
remains to be done is the ability to extract information
about the color string of the final states so that it can
be used in codes like HERWIG [10]. Work is being done
towards this end [18].

Phase-space generation

In the current status of the code we have implemented
two ways of phase-space generation. First of all we have
RAMBO [8], a flat phase-space generator which has been
around for many years and has proved reliable for the
relevant calculations. Recently though, a new generator
has been developed, SARGE [11], which take into account
the so-called antenna structure of QCD amplitudes. So far
it has been proved very efficient for the generation of this
type of phase space [9].

Event generation

Let us consider the scattering of two hadrons. The con-
tent of a hadron is characterized by the parton structure
function f(x,Q2) where x is the fraction of the momen-
tum P of the hadron, carried by the parton, p = xP , and
Q2 is the QCD scale. The cross section for the scatter-
ing of two hadrons is given by the sum of all subprocesses
between the parton constituents of the hadrons, weighted
with the corresponding structure functions of the incom-
ing partons:

σ(s) =
∑
ij P

∫ 1

0
dx1dx2

∫
dΦFi(x1)Fj(x2)

(
dσ̂
dΦ

)
ij

, (17)

where s is the center of mass (CM) energy squared at the
hadron level. As usual the functions Fm(x) are defined
by Fm(x) = fm(x)/x, where fm(x) are the various par-
ton structure functions. The quantities (dσ̂/dΦ)ij are the
matrix element squared, summed (i.e. integrated) over he-
licity and color degrees of freedom, and dΦ is the element
of the phase space. The sum (i.e. integral) is over all par-
tonic processes. We use (17) to estimate jet production
rates.

Sum over processes

Finally, once given the number of jets, we are able to com-
pute all the relevant subprocesses that contribute at one
go. This is done by randomly choosing a subprocess and
then using Monte Carlo to obtain the total cross section
from all contributions. The random choice of a subprocess
is based on the choice of a pair of integers (i,m), i select-
ing one out of the nine possible initial states, and m being
the number of qq̄ pairs in the final state, see (16).

There is also the option to use an optimization based
on the fact that some processes overwhelm the total cross

section over others (for example the purely gluonic pro-
cess, gg → ng has the largest cross section by an order of
magnitude, compared to processes with different initial or
final states).

The algorithm has been used firstly to compute cross
sections for 4 and 5 jet production. We have chosen a CM
energy of s1/2 = 14TeV and we apply the following cuts:

pTi > 60GeV, θij > 30◦, |ηi| < 3,

where pT = (p2
x + p2

y)
1/2 is the transverse momentum of

a jet, θij = ((pi, (pj), is the angle between jets and η =
− ln tan (θ/2), is the pseudo-rapidity.

For convenience all results are obtained with a non-
running strong coupling constant put equal to unity. There
are several parameterizations for the parton structure
functions in the literature. The one that we will use is
the MRST parameterization [15], and the number of light
flavors is taken to be f = 5.

In Table 2 we have listed several subprocesses and their
cross sections, relative for pp scattering at LHC. The table
is organized as follows: we are not referring to a particular
quark flavor, so we use the letters q, r, s to denote quarks
or antiquarks. Since we consider all quarks and antiquarks
massless it makes no difference which particular flavor ap-
pears in the final state. We compare our results with those
from a well established code, NJETS. We also show dis-
tributions of the maximum pT for two processes, namely
gg → gggg and qq̄ → rr̄ss̄.

To show the potential of the flavor integration method
we calculate the total cross section for a set of possible
final states and compare with NJETS where as usual a
sum over different flavor states has been used. The results
are presented in Table 3. We have used the letter q to
denote any flavor and all combinations have been taken
into account in the calculation of the cross section. We
have used the same cuts and CM energy as before.

We have also obtained the total cross sections for the
production of 3, 4, 5, 6, 7 and 8 jets. These are listed in
Table 4. Also shown there is the contribution of the purely
gluonic process to the total cross section. We see the frac-
tion of this process compared to the total is diminishing
with increasing number of jets, as was already commented
in [16].

Finally we have plotted distributions of the total cross
section for the production of 5, 6 and 7 jets. The quantities
shown are

(1) the transverse momenta pT of the products, and
(2) the invariant masses Mij = (2(pi · pj))1/2.

4 Summary

We have presented a procedure to calculate matrix ele-
ments and cross sections in QCD using an iterative algo-
rithm based on the Schwinger–Dyson equation. Thus we
free ourselves from the task of computing all Feynman
graphs for a process, a task which can become impos-
sible even for a moderate number of particles involved.
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Table 2. Production rates for 4 and 5 jet production. All
results have an estimated error of 4%

√
s = 14TeV

Process OUR CODE (nb) NJET S (nb)

gg → gggg 2.681 2.533
qq̄ → gggg 0.0020 0.0021
qg → qggg 1.131 1.159
gg → qq̄gg 0.106 0.104
qq̄ → qq̄gg 0.062 0.059
qq̄ → rr̄gg 0.586 × 10−3 0.558 × 10−3

qq → qqgg 0.134 0.126
qr̄ → qr̄gg 0.171 0.161
qr → qrgg 0.210 0.197
qg → qq̄qg 0.035 0.033
qg → rr̄qg 0.032 0.035
gg → qq̄qq̄ 0.524 × 10−3 0.526 × 10−3

gg → qq̄rr̄ 1.059 × 10−3 1.074 × 10−3

qq̄ → qq̄qq̄ 0.807 × 10−3 0.851 × 10−3

qq̄ → qq̄rr̄ 0.866 × 10−3 0.786 × 10−3

qq̄ → rr̄rr̄ 7.94 × 10−6 7.93 × 10−6

qq̄ → rr̄ss̄ 1.54 × 10−5 1.49 × 10−5

qq → qqqq̄ 1.64 × 10−3 1.60 × 10−3

qq → qqrr̄ 1.67 × 10−3 1.60 × 10−3

qr → qrqq̄ 2.78 × 10−3 2.91 × 10−3

qr → qrss̄ 2.63 × 10−3 2.57 × 10−3

qr̄ → qr̄qq̄ 2.28 × 10−3 2.41 × 10−3

qr̄ → qr̄rr̄ 2.20 × 10−3 2.07 × 10−3

qr̄ → qr̄ss̄ 2.39 × 10−3 2.12 × 10−3

√
s = 14TeV

Process OUR CODE(pb) NJET S(pb)

gg → ggggg 159.49 160.40
qq̄ → ggggg 0.141 0.136
qg → qgggg 87.94 84.37
gg → qq̄ggg 9.193 9.218
qq̄ → qq̄ggg 4.37 4.561
qq̄ → rr̄ggg 0.034 0.0348
qq → qqggg 11.47 12.35
qr̄ → qr̄ggg 11.39 11.98
qr → qrggg 16.51 17.29
qg → qq̄qgg 3.858 3.799
qg → rr̄qgg 3.738 3.887
gg → qq̄qq̄g 0.104 0.101
gg → qq̄rr̄g 0.207 0.206
qq̄ → qq̄qq̄g 0.252 0.259
qq̄ → qq̄rr̄g 0.230 0.254
qq̄ → rr̄rr̄g 0.0020 0.0020
qq̄ → rr̄ss̄g 0.0038 0.0038
qq → qqqq̄g 0.684 0.691
qq → qqrr̄g 0.698 0.659
qr → qrqq̄g 0.998 0.922
qr → qrss̄g 0.862 0.941
qr̄ → qr̄qq̄g 0.684 0.658
qr̄ → qr̄rr̄g 0.650 0.678
qr̄ → qr̄ss̄g 0.634 0.665
qg → qq̄qq̄q 0.0352 0.0334
qg → qq̄rr̄q 0.0646 0.0682
qg → rr̄rr̄q 0.0328 0.0328
qg → rr̄ss̄q 0.0650 0.0668

Table 3. Flavor integration with an estimated error of 2%

√
s = 14TeV

Process OUR CODE (nb) NJET S (nb)

qq̄ → qq̄gg 0.242 0.232
qq̄ → qq̄qq̄ 0.015 0.014
qq → qqgg 0.311 0.322
gg → qq̄qq̄ 0.013 0.014
qg → qq̄qg 0.167 0.174

We have also managed to bypass the computationally ex-
pensive procedure of summing over all possible color and
helicity configurations, by introducing continuous vectors
to represent these otherwise discrete quantities and using
Monte Carlo integration instead of summation. At this
stage our code can reliably compute scattering amplitudes
and cross sections
(1) for individual, single-flavor processes;
(2) for processes where a sum over all contributing flavors

is needed both in the initial or the final states;
(3) for total jet cross sections, where we are interested in

production rates with a contribution from all possible
subprocesses and all flavors.
Our future interests involve a convolution of this code

with fragmentation codes like HERWIG, so that one can
perform realistic simulations of multi-jet processes.

Appendix

A The complete recursion relations

Below we give the full recursion equations including the
color.
(1) Gluon field Aµ(p):

Aµ
AB(P ) =

gs
2P 2

∑
P=p1+p2

{
ψ̄B(p1)γµψA(p2)

− 1
3

(∑
C

ψ̄C(p1)γµψC(p2)

)
δAB

}
σ(p1, p2)

+
gs
2P 2

∑
P=p1+p2

V µν
λ (P, p1, p2)

{
Aν
AC(p1)Aλ

CB(p2)

− Aλ
AC(p2)Aν

CB(p1)
}
σ(p1, p2)

+
igs
2P 2

∑
P=p1+p2

Xµν
λρ

{
Aν
AC(p1)H

λρ
CB(p2)

− Hλρ
AC(p2)Aν

CB(p1)
}
σ(p1, p2).

(2) Auxiliary field Hµν(p):

Hµν
AB(P ) =

(igs)
4

∑
P=p1+p2

Xµν
λρ {Aλ

AC(p1)A
ρ
CB(p2)

− Aρ
AC(p2)Aλ

CB(p1)}σ(p1, p2).
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Fig. 7. Maximum pT distributions for
gg → gggg (top plot) and qq̄ → rr̄ss̄ (bot-
tom plot)

Table 4. Total cross sections for the production of up to 8 jets. The last row
shows the percentage contribution of the purely gluonic process (gg → ng).
The estimated error is 3% for 3 and 4 jets, 4% for 5 and 6 jets and 6% for 7
and 8 jets

# of jets 3 4 5 6 7 8

σ(nb) 91.41 6.54 0.458 2.97 ×10−2 2.21 ×10−3 2.12 ×10−4

% Gluonic 45.7 39.2 35.7 35.1 33.8 26.6

(3) Fermion field ψA(p):

ψA(P ) =
gs
P 2

∑
P=p1+p2

P/A/AB(p1)ψB(p2)σ(p1, p2).

(4) Antifermion field ψ̄A(p):

ψ̄A(P ) =
gs
P 2

∑
P=p1+p2

ψ̄B(p2)A/BA(p1)P/σ(p1, p2).

B Counting diagrams

In this appendix we show how the number of tree-level
graphs for a general QCD process can be determined. This
is done in the same recursive manner as that in which the
amplitudes are computed. Let there be k quark flavors.
We shall compute the number of graphs that take a single
specified parton into a number of specified partons, as
follows. Let us denote by ai(n0, n1, n̄1, n2, n̄2, . . . , nk, n̄k)
the number of graphs with a quark of type i coming in and

ending up in n0 gluons, n1 quarks of type 1, n̄1 antiquarks
of type 1, and so on. We define the following generating
function:

ψ(z, x1, x̄1, x2, x̄2, . . . , xk, x̄k)

=
∑

n0,n1,...,n̄k≥0

ai(n0, n1, n̄1, n2, n̄2, . . . , nk, n̄k)

×zn0xn1
1 x̄n̄1

1 xn2
2 · · · x̄n̄k

k

n0!n1!n̄1!n2! · · · n̄k! .

The generating functions ψ̄ for incoming antiquarks, and φ
for incoming gluons, are defined in an analogous manner.
The Feynman rules of QCD then tell us that the various
generating functions are related in the following manner:

ψi = xi + ψiφ,

ψ̄i = x̄i + ψ̄iφ,

φ = z +
1
2
φ2 +

1
6
φ3 +

k∑
i=1

ψiψ̄i.
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Fig. 8. pT distributions for 5, 6 and 7 jet
production
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Fig. 9. Invariant mass distributions for 5,
6 and 7 jet production
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Table 5. The five types of initial states (not counting trivial
charge conjugation), with the corresponding number of distinct
processes, and the functions needed to compute their multiplic-
ity factors

Initial-state type Distinct processes Multiplicity factor

A (gg) C1(n) χ(n0, n1, . . . , nf ; f)
B (qq̄) C2(n) χ(n0, n2, . . . , nf ; f − 1)
C (gq and qg) C2(n − 1) χ(n0, n2, . . . , nf ; f − 1)
D (qq) C2(n − 2) χ(n0, n2, . . . , nf ; f − 1)
E (qq′ and qq̄′) C3(n − 2) χ(n0, n3, . . . , nf ; f − 2)

These can trivially be solved in such a way that everything
is expressed in terms of φ:

ψi = xi/(1 − φ), ψ̄i = x̄i/(1 − φ),

and

φ = z +
1
2
φ2 +

1
6
φ3 +

ξ

(1 − φ)2
, ξ =

k∑
i=1

xix̄i.

The number of different quark flavors is seen not to be a
complication here. By computer algebra, the function φ
can easily be obtained to quite high order in z and the
x’s, and the number of diagrams read off from the corre-
sponding coefficient. A similar discussion can be found in
[7], but we feel that the above procedure is simpler and
moreover leads itself to estimates of the asymptotic num-
ber of graphs for very large multiplicities [17].

C Counting distinct processes

We start by tabulating in Table 5 the five types of ini-
tial states (not counting trivial charge conjugation), with
the corresponding number of distinct processes, and the
functions needed to compute their multiplicity factors. We
denote by n the number of final-state partons.

In order to clarify what we mean we consider the ex-
ample of the type A initial state. Each distinct process is
defined by an array (n0, n1, . . . , nf ). For instance, in the
case of four-jet production we have

(4, 0, 0, 0, 0, 0) gg → gggg,

(2, 1, 0, 0, 0, 0) gg → ggqq̄,

(0, 2, 0, 0, 0, 0) gg → qq̄qq̄,

(0, 1, 1, 0, 0, 0) gg → qq̄rr̄.

Therefore, in order to count the distinct processes we
need the following three functions:

C1(n) =
∑

n0+2n1+...+2nf =n

Θ(n1 ≥ n2 ≥ . . . ≥ nf ),

C2(n) =
∑

n0+2n1+...+2nf =n

Θ(n2 ≥ n3 ≥ . . . ≥ nf ),

and

C3(n) =
∑

n0+2n1+...+2nf =n

Θ(n3 ≥ n4 ≥ . . . ≥ nf ).

Of course each distinct process, given by the array
(n0, n1, . . . , nf ) has a multiplicity factor that is easily com-
puted:

χ(n0, n1, . . . , nf ; f) = nf (nf − 1) . . . (nf − j + 1)/j!,

where j is defined by

j = f if
f∏
i=1

ni �= 0,

j = f − 1 if
f−1∏
i=1

ni �= 0,

. . .

j = 1 if n1 �= 0,
j = 0 otherwise.

Results for f = 5 final-state flavors and f = 4 initial-
state flavors are shown in Table 1 of Sect. 2, in the discus-
sion of flavor treatment, just to compare with [1].

Moreover it is very easy to produce the list of the dis-
tinct processes to be computed for each case as well as the
multiplicity factors χ. A code doing this is available.

To study high-n behavior we may use the generating
function technique. Then we get

F1(x) =
∞∑
n=0

C1(n)xn =
1

(1 − x)

f∏
j=1

1
(1 − x2j)

,

F2(x) =
∞∑
n=0

C2(n)xn =
1

(1 − x)(1 − x2)

f−1∏
j=1

1
(1 − x2j)

,

F3(x) =
∞∑
n=0

C3(n)xn =
1

(1 − x)(1 − x2)2

f−2∏
j=1

1
(1 − x2j)

.

As one can easily see, the order of the pole at x = 1 is
always given by f + 1.

Our results may be compared directly to those ob-
tained in [1]. In fact, using our method, we were able to
detect several errors in Table 9.3, page 125, among which
the fact that a processes is missing for the cases m = 6
andm = 7, namely qr → qrrr̄(g). Correcting for this error
we get full agreement.
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